`
isiqi
  • 浏览: 16028698 次
  • 性别: Icon_minigender_1
  • 来自: 济南
社区版块
存档分类
最新评论

Linux系统下的多线程编程入门一

阅读更多

引言

  线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期, solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。

  为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。

  使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。

  使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地方。

  除了以上所说的优点外,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然有以下的优点:

  1) 提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。

  2) 使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。

  3) 改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。

  下面我们先来尝试编写一个简单的多线程程序。

  简单的多线程编程

  Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。顺便说一下,Linux下pthread的实现是通过系统调用clone()来实现的。clone()是Linux所特有的系统调用,它的使用方式类似fork,关于clone()的详细情况,有兴趣的读者可以去查看有关文档说明。下面我们展示一个最简单的多线程程序 example1.c。

/* example.c*/
#include <stdio.h>
#include <pthread.h>
void thread(void)
{
 int i;
 for(i=0;i<3;i++)
  printf("This is a pthread.n");
}

int main(void)
{
 pthread_t id;
 int i,ret;
 ret=pthread_create(&id,NULL,(void *) thread,NULL);
 if(ret!=0){
  printf ("Create pthread error!n");
  exit (1);
 }
 for(i=0;i<3;i++)
  printf("This is the main process.n");
 pthread_join(id,NULL);
 return (0);
}

  我们编译此程序:

gcc example1.c -lpthread -o example1

  运行example1,我们得到如下结果:

This is the main process.
This is a pthread.
This is the main process.
This is the main process.
This is a pthread.
This is a pthread.

  再次运行,我们可能得到如下结果:

This is a pthread.
This is the main process.
This is a pthread.
This is the main process.
This is a pthread.
This is the main process.

  前后两次结果不一样,这是两个线程争夺CPU资源的结果。上面的示例中,我们使用到了两个函数,pthread_create和pthread_join,并声明了一个pthread_t型的变量。

  pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义:

  typedef unsigned long int pthread_t;

  它是一个线程的标识符。函数pthread_create用来创建一个线程,它的原型为:

extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,void *(*__start_routine) (void *), void *__arg));

  第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。这里,我们的函数thread不需要参数,所以最后一个参数设为空指针。第二个参数我们也设为空指针,这样将生成默认属性的线程。对线程属性的设定和修改我们将在下一节阐述。当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。

  函数pthread_join用来等待一个线程的结束。函数原型为:

  extern int pthread_join __P ((pthread_t __th, void **__thread_return));

  第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为:

  extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));

  唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给 thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。

  在这一节里,我们编写了一个最简单的线程,并掌握了最常用的三个函数pthread_create,pthread_join和pthread_exit。下面,我们来了解线程的一些常用属性以及如何设置这些属性。

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics